Како израчунати криву звона

Posted on
Аутор: John Stephens
Датум Стварања: 24 Јануар 2021
Ажурирати Датум: 21 Новембар 2024
Anonim
ФИНАЛЬНОЕ ПРЕВРАЩЕНИЕ - Tiny Bunny #8
Видео: ФИНАЛЬНОЕ ПРЕВРАЩЕНИЕ - Tiny Bunny #8

Садржај

Кривуља звона даје особи која проучава чињеницу пример нормалне дистрибуције опажања. Кривуља се назива и Гауссова крива по немачком математичару Царлу Фриедрицху Гауссу који је открио многа својства кривина. Уграђена крива приближава опсег и рачуна се за многа стварна запажања чињеница које постоје у природи и цивилном друштву, као што су тежина и образовни рад.

    Одаберите чињеницу за коју желите нормалну дистрибуцију вероватноће. Размислите како ће вам пример нормалних појава помоћи да дођете до закључка. Решите одлучујућа питања о својој чињеници. Да ли је нормална расподјела тежине корисна за проучавање тежине у популацији медицинских пацијената? Или је популација сувише необична или ненормална да би користила нормалну криву?

    Направите скуп података за своја запажања која планирате да зацртате. За сваки предмет унесите чињеницу као нумеричку вредност. Додијелите сваком предмету број и означите посматрање "к подмрежни број. " Подесите "к " вриједности од најниже до највише. Додијелите сваком субјекту други број, број налога за посматрање и означите та запажања "к подредак. "

    Доделите распон бројева за нумеричке вредности користећи најниже опажање до највише посматрање.

    Користите формулу кривуље звона да бисте израчунали вредност оси и за сваку вредност к осе. Формула криве звона је и = (е ^ (? - к? ^ 2/2)) /? 2 ?. И је број опажања за к вредност. Кс је посматрана вредност. Употријебите к подред за број налога за израчун и редослијед листе. Направите табелу к вредности и одговарајуће и вредности.

    Графикујте криву звона за своју чињеницу. Помоћу графичког папира распоредите граф са оси к и оси и. Нацртајте распон осе да бисте започели са најнижом вриједности и завршили на највишој вриједности. Започните ос и са 0, без опажања и завршавајте на највећем броју потенцијалних опажања за било коју к вредност. Највеће потенцијално запажање је највећи број за који верујете да бисте могли да пронађете своју чињеницу; на пример, највећи број мушких пацијената тежине 180 килограма.

    Када желите да упоредите своје посматране чињенице са нормалном дистрибуцијом, погледајте графикон својих запажања и нормалну криву коју сте схватили. Упоредите како стварна запажања падају у областима унутар једне стандардне девијације средње вредности. Када имате добар скуп података за нормалну популацију, 90 процената ваших запажања спада у 1,65 стандардних девијација, лево и десно од средње кривуље. Разлике у нормалној кривуљи говоре да је ваша популација изнад просека, када је средина за стварна опажања десно, или испод просека, када је проматрана средина са леве стране.

    Савети

    Упозорења