Како пронаћи угао између дијагонала коцке

Posted on
Аутор: John Stephens
Датум Стварања: 27 Јануар 2021
Ажурирати Датум: 20 Новембар 2024
Anonim
БАХШ ПЛОВ Бухарских Евреев 1000 летний РЕЦЕПТ КАК ПРИГОТОВИТЬ
Видео: БАХШ ПЛОВ Бухарских Евреев 1000 летний РЕЦЕПТ КАК ПРИГОТОВИТЬ

Ако бисте узели квадрат и нацртали две дијагоналне линије, прелазиле би се у средини и формирале четири права троугла. Две дијагонале се прелазе на 90 степени. Интуитивно можете претпоставити да ће се две дијагонале коцке, свака која води од једног угла коцке до њеног супротног угла и прелазећи у центру, такође прећи под правим углом. Били бисте у заблуди. Одређивање угла под којим се две дијагонале у коцки прелазе једна на другу мало је сложеније него што се може чинити на први поглед, али заиста чини одличну праксу за разумевање принципа геометрије и тригонометрије.

    Дефинишите дужину ивице као једну цјелину. По дефиницији, свака ивица на коцки има идентичну дужину од једне јединице.

    Помоћу питагорејске теореме одредите дужину дијагонале која иде од једног угла до супротног угла на истој страни. Назовите ово „кратком дијагоналом“ ради јасноће. Свака страна формираног правог троугла је једна јединица, па дијагонала мора бити једнака √2.

    Помоћу питагорејске теореме одредите дужину дијагонале која иде од једног угла до супротног угла супротне стране. Назовите ово „дугом дијагоналом“. Имате прави троугао са једном страном једнаком 1 јединици и једном страном која је једнака „краткој дијагонали“, √2 јединице. Квадрат хипотенузе једнак је збиру квадрата страна, па хипотенуза мора бити √3. Свака дијагонала која иде од једног угла коцке до супротног угла дугачка је √3 јединице.

    Нацртајте правоугаоник који представља две дуге дијагонале које се прелазе у средини коцке. Желите да пронађете угао њиховог пресека. Овај правоугаоник ће бити висок 1 јединица и широк √2 јединице. Дуге дијагонале се сијеку једна на другу у центру овог правоугаоника и творе двије различите врсте троугла. Један од ових троуглова има једну страну једнаку јединици, а друге две стране једнаку √3 / 2 (једна половина дужине дијагонале). Друга такође има две стране једнаке √3 / 2, али је њена друга страна једнака √2. Морате анализирати само један од троуглова, па узмите први и решите се за непознати угао.

    Користите тригонометријску формулу ц ^ 2 = а ^ 2 + б ^ 2 - 2аб цос Ц да бисте решили за непознати угао овог троугла. Ц = 1, и а и б су једнаки √3 / 2. Укључивши ове вредности у једначину, утврдићете да је косинус вашег непознатог угла 1/3. Узимање инверзног косинуса од 1/3 даје угао од 70,5 степени.