Како израчунати центрифугалну силу

Posted on
Аутор: John Stephens
Датум Стварања: 25 Јануар 2021
Ажурирати Датум: 21 Новембар 2024
Anonim
Эти тайные цифры денежного кода принесут деньги в кошелек. Первые деньги уже через 48 часов
Видео: Эти тайные цифры денежного кода принесут деньги в кошелек. Первые деньги уже через 48 часов

Садржај

Вероватно сте доживели вожњу низ аутопут, када одједном цеста скрене улево и осећа се као да вас гура удесно, у супротном смеру од кривине. Ово је чест пример онога што многи људи мисле и називају "центрифугалном силом." Ова "сила" се погрешно назива центрифугална сила, али у ствари не постоји!

Не постоји таква ствар као што је центрифугално убрзање

Објекти који се крећу једноличним кружним покретима доживљавају силе које одржавају објект у савршеном кружном кретању, што значи да је збир сила усмерен према средини. Једна сила попут напетости у низу је пример центрипеталне силе, али и друге силе могу да испуне ову улогу. Напетост у струни резултира центрипеталном силом, која узрокује једнолико кружно кретање. Вероватно је ово што желите да израчунате.

Погледајмо прво шта је центрипетално убрзање и како га израчунати, као и како израчунати центрипеталне силе. Тада ћемо моћи разумјети зашто не постоји центрифугална сила.

Савети

Брзи резиме

Да бисте разумели центрипеталну силу и убрзање, можда ће бити корисно сетити се неког вокабулара. Прво, брзина је вектор који описује брзину и смер кретања објекта. Даље, ако се брзина мења, или другим речима, брзина или смер предмета се мењају у зависности од времена, такође има убрзање.

Посебан случај дводимензионалног кретања је једнолично кружно кретање, у којем се предмет креће константном угаоном брзином око централне, непокретне тачке.

Напомена кажемо да објект има константу брзина, али не брзина, јер објект непрекидно мења правце. Према томе, објекат има две компоненте убрзања: тангенцијално убрзање које је паралелно са смером кретања објекта и центрипетално убрзање које је окомито.

Ако је кретање једнолико, јачина тангенцијалног убрзања је нула, а центрипетално убрзање има константну, нулту нулу. Сила (или силе) која изазива центрипетално убрзање је центрипетална сила која такође усмерава према средини.

Ова сила, од грчког што значи „тражење центра“, одговорна је за ротацију објекта уједначеном кружном стазом око центра.

Израчунавање центрипеталних убрзавања и сила

Центрипетално убрзање објекта је дато са а = в2/ Р, где в је брзина објекта и Р је радијус на коме се окреће. Међутим, испоставило се да је количина Ф = ма = мв2/ Р у ствари није сила, али може се користити да вам помогне да повежете силу или силе које потичу кружно кретање и центрипетално убрзање.

Па зашто не постоји центрифугална сила?

Претпоставимо да постоји нешто што је центрифугална сила или сила која је једнака и супротна центрипеталној сили. Да је то случај, две би силе отказале једна другу, што значи да се објект не би кретао кружном стазом. Било које друге присутне силе могу гурнути предмет у неком другом правцу или правој линији, али ако је увек постојала једнака и супротна центрифугална сила, не би било кружних покрета.

Па шта је са осећајем који осећате када идете око кривине на путу и ​​у другим примерима центрифугалне силе? Ова „сила“ је заправо резултат инерције: тело се креће у правој линији, а аутомобил вас заправо гура око кривине, тако да има осећај као да се притиснемо у аутомобил у супротном смеру кривине.

Шта заиста користи центрифугални калкулатор силе

Калкулатор центрифугалне силе у основи узима формулу за центрипетално убрзање (која описује стварни феномен) и преокреће смјер силе, како би описао привидну (али у коначници фиктивну) центрифугалну силу. Стварно то не треба чинити у већини случајева, јер не описује стварност физичке ситуације, само привидну ситуацију у неинерцијалном референтном оквиру (тј., Из перспективе некога у аутомобилу који се окреће).